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Abstract 

The quality of an E map is usually affected by system- 
atic and /o r  random phase errors, by amplitude 
truncation effects in the series representation of the 
electron density, by the experimental uncertainty in 
the estimation of I EI and by the intrinsic nature of 
the Fourier coefficients use~t (i.e. the E's).  It is shown 
that simple supplemental calculations can improve 
the quality of an E map. Large molecular fragments 
can often be localized in the new map even when the 
original one is not easily interpretable. 

1. Introduction 

Usually a direct-methods procedure ends with one or 
more sets of approximated phases with which E maps 
are computed. The chemical significance of any trial 
solution is checked via atomic connectivity tables. 
Often one or more chemically sound fragments are 
well localized: the complete structure is then obtained 
by traditional least-squares and Fourier techniques. 
Sometimes a clear solution is not obtained: the map 
is uninterpretable because some atoms are occasion- 
ally missed or ghost peaks are present or the molecular 
geometry is distorted. But even in these cases a post 
mortem analysis of the structure may reveal the pres- 
ence of correctly positioned atoms or fragments. 
Unfortunately, if such atoms or fragments were not 
a priori recognized in the E map, a procedure devoted 
to recovering the total from a partial structure (Karle, 
1970; Beurskens, Prick, Doesburg, & Gould, 1979; 
Giacovazzo, 1983; Burla, Cascarano, Fares, 
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Giacovazzo, Polidori & Spagna, 1989) would not be 
readily applicable. In this context it is of crucial 
importance to have a procedure which, from a tradi- 
tional E map, is able to obtain a new more interpret- 
able Fourier map. 

The quality of a map depends on several factors 
among which the following three play a prominent 
role: 

(a) The phase errors. In most cases these are 
unavoidable: large random errors can be tolerated 
without great loss of structural information in the E 
map while systematic errors have greater destructive 
effects (Silva & Viterbo, 1980). 

( b ) Amplitude truncation effects in the series rep- 
resentation of the electron density. Traditional direct 
methods do not phase reflections under the minimum 
threshold value ETr"~ 1.2: in most of the practical 
applications ETr lies in the range 1.30-1.50. If phases 
are determined with sufficient accuracy the amplitude 
truncation effects are not really harmful (this is a 
necessary condition for the general success of direct 
methods). However, if this effect is associated with 
phase errors the final result is often destructive. A 
classical example is structures suffering from pseudo- 
translational symmetry: if no special action is under- 
taken the reflections actively used in the phasing 
process coincide with substructure reflections. Even 
when these reflections are accurately phased, and that 
it is not the rule, the information on the superstructure 
is completely lost in the E map. 

( c) The Fourier coefficients used for calculating the 
map. It is a traditional practice to use E coefficients 
at the conclusion of a phasing process: they produce 
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a peakyness effect in the map which makes its inter- 
pretation easier in terms of atoms. On the other hand, 
false details, ripples of heavy atoms etc. are also 
produced which in some cases make the correct inter- 
pretation difficult. Such undesirable behaviour is gen- 
erated by the intrinsic nature of the E coefficients 
[i.e. real atoms are replaced by unreal point atoms; 
(IEI 2) is never vanishing for any (sin 0)/A value] and 
by their imperfect estimation from experimental IF[ 
values. 

An effective process offering the possibility of 
reducing phase errors by handling fragments pro- 
duced by E maps is the T R I T A N  procedure (Refaat 
& Woolfson, 1988). A further technique able to 
improve the information provided by standard E 
maps has been described by Sheldrick (1982). The 
phase determination was divided into two stages: (a) 
cycles of tangent refinement are performed among a 
reduced number (say 200) of phases: the best (on the 
basis of early figures of merit) trials are then subjected 
to one cycle of tangent expansion up to say 400 
phases. The main purpose of this step is to increase 
the number of trials without paying too much in terms 
of computer time; (b) the phases of the selected trials 
are submitted to partial structure recycling based on 
E values and on special least-squares procedures. 

In the present paper we are mostly interested in 
obtaining maps in which the effects of amplitude 
truncation and those arising from the use of E 
coefficients are strongly reduced. In particular we will 
show that: 

(1) direct phase expansion can be extended to ]E I 
values much smaller than threshold values normally 
used in standard direct procedures (or suggested in 
Sheldrick's paper). Our tests prove that there is some 
penalty to pay in terms of phase accuracy, but it is 
largely compensated by smaller amplitude truncation 
effects; 

(2) the information contained in a standard E map 
can be improved without least-squares techniques. 
Recycling leads to an improved F (rather than E) 
map. Such a process can be applied by all those 
direct-methods programs not integrated in complete 
crystallographic packages. 

2. The procedure 

It is well known that highly regular structures show 
in E maps pronounced translational symmetries addi- 
tional to that really present. Regular long chai~as, 
fused rings etc. are joined in an E map to translated 
spurious maxima whose intensity is often comparable 
with that of true atoms. Bfirgi & Dunitz (1971) suggest 
extending the phasing process to smaller E values as 
a means of reducing the level of false details. Mo, 
Hjort~s & Svinning (1973) warned against such a 
practice: the active use of small E values can intro- 
duce errors in the phasing process which, systemati- 

cally propagated, can cause the failure of the phasing 
process. In some cases it may be advantageous to 
break off the phasing process at an early stage and 
to calculate E maps with a small number of terms 
rather than to involve an unreliable large number of 
phases. 

Biirgi & Dunitz's suggestion may be harmonized 
with Mo, Hjort~,s & Svinning's warning on the condi- 
tion that large phase errors associated with small E 's  
have no effect on the phase determination of the 
largest E's. Such a condition is satisfied by the 
expansion procedure here described. The scenario is 
that where SIR88 (Burla, Camalli, Cascarano, 
Giacovazzo, Polidori, Spagna & Viterbo, 1989) is run 
in order to phase a number NLAR of reflections with 
values larger than ETr. The NTOP (in default 
NTOP = 10) sets of phases with the highest combined 
figure of merit CFOM are saved. 

The new adopted expansion procedure is per- 
formed through the following main steps: 

(a) A number NEXP of reflexions, immediately 
following the NLAR reflexions in a list sorted in 
decreasing order of E, is selected. We have fixed 
NEXP to 0.8 × NLAR, with NEXP < - 300. 

(b) All triplets (called here qJE or psi-E triplets) 
relating one of the NEXP reflexions with two NLAR 
reflexions are set up. To make the procedure faster 
triplets are estimated in accordance with Cochran's  
formula. 

(c) For the first of the NTOP trial solutions (that 
with the highest value of CFOM) the phases of the 
NEXP reflexions are determined by means of a weigh- 
ted tangent formula (Burla, Cascarano, Giacovazzo, 
Nunzi & Polidori 1987). 

(d) A weighted E map is computed with the expan- 
ded list of N L A R + N E X P  reflexions and then 
automatically interpreted. Each reflexion is given the 
weight D~(a) where a is the reliability parameter 
associated with each phase and D~(x)= l l (x) / lo(x) .  
li is the modified Bessel function of order i. 

(e) A peak search program automatically finds peak 
maxima which are arranged in decreasing order of 
the intensity INT. The standard molecule-recognition 
program of SIR88 produces molecular fragments and 
labels (in a chemical sense) peaks. In this step label- 
ling is not used: the heaviest atomic species is associ- 
ated with all the peaks. With the ith peak an 
occupancy factor 

oc(i) = occ(i) × Wl(i) × w2(i) 

is associated, where occ(i) is the crystallographic 
occupancy, w~(i)-<l is a weight depending on the 
ratio INT( i ) / INT(1)  and w2(i) is 1 for peaks belong- 
ing to a molecular fragment, 0.667 for isolated peaks 
and 0 for peaks too close to higher-intensity peaks. 

( f )  A structure-factor calculation is made. An 
observed Fourier map is then computed with 
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coefficients 

wl Fobsl exp [ B(sin20)/A 2] exp (i~ca,c) 

where B is the average isotropic thermal factor 
calculated in the normalization process. 
]Fobs] exp [B (sin20)/A 2] instead of ]Fobs] is used in 
order to improve peakyness (it is the expected value 
of IFobs] in the absence ofthermal motion). W is Sim's 
(1960) weight, calculated on the (arbitrary) assump- 
tion that 2/3 of the structure is well localized. 

(g) Steps (e) and (f)  are repeated twice. Then 
peak-search and molecule-recognition programs are 
again run and peaks relabelled. 

3. Experimental 

The success of the procedure relies on the expectation 
that phase expansion to smaller E's  allows the reduc- 
tion of amplitude termination errors without a 
remarkable loss of reliability in phase estimates. In 
order to check such an assumption we have applied 
the procedure to the crystal structures quoted in Table 
1. In Table 2 for each structure the following param- 
eters are given: 
NRIF total number of reflexions 
NLAR number ofreflexions with largest E chosen 

by SIR88 for solving the crystal structure 
EMIN minimum E value for NLAR reflexions 
N - ~ 2  number of triplets among the NLAR 

reflexions 
E~bMIN minimum E value for NEXP reflexions 
N~E number of 4JE triplets 
G~bE minimum value of the reliability parameter 

(according to Cochran) for ~E triplets 
(A~)~ 2 average phase error for NLAR reflexions. 

In order to simulate a realistic distribution 
of the error A¢ is obtained from true 
phases after one cycle of tangent 
refinement on the NLAR reflexions 

(A~)~0E average phase error for NEXP reflexions 
after phase expansion from NLAR 
reflexions. 

Some observations may be made about Table 2: 
(1) Our experience shows that a large number of 

@e triplets is a necessary condition for a reliable phase 
expansion. In our tests the minimum threshold value 
for the reliability parameter of a ~bE triplet is 0.6. This 
guarantees for all the structures a sufficiently large 
number of @~ triplets. 

(2) The phase expansion to NEXP reflexions is 
usually quite reliable. Obviously (A~)~E is always 
larger than (A¢)z2: often their difference is quite 
negligible but even when it is very large the map 
calculated with NLAR+ NEXP reflexions is remark- 
ably better (see later) than the original one. 

The application of SIR88 to the test examples 
quoted in Table 1 very often provides the complete 
or nearly complete crystal structure. We only give 

Table 1. Code name, space group and crystallochemical 
data for test structures 

S t r u c t u r e  S p a c e  

c o d e *  g r o u p  M o l e c u l a r  f o r m u l a  Z 

APAPA P4t212 C3oH37NtsOtoP 2 • 6H20 8 
AZET Pca21 C21Ht6CI N O 8 
BED 14 C26H26N40 4 8 
BOBBY P213 Na+Ca2+N(CH2CO2)33 - 4 
CEPHAL C2 CIsH21NO a 8 
DIOLE I3,2d CtoHisO 2 16 
GOLD Cc C28HI6 8 
GRA4 P1 C3oH22N20 4 2 
INOS P2~/n C6Ht206 • H20 8 
LOGAN P212t21 CI7H26OIo 4 
NEWQB P I  C24H2oN20 5 4 
NO55 Fdd2 C2oH24N 4 16 
PGE2 P 1 C2oH3205 1 
QUI NOL R3 C6H602 54 
RIFOLOt  P2 t C39H49N Ors 2 
TURI0  P6322 CI5H240 2 12 

* For the sake of  brevity complete references for known structures are 
not given. The reader is referred to magnetic tapes distributed by the 
crystallographic groups in G6ttingen and York. 

t Cerrini, Lamba, Burla, Polidori, & Nunzi (1988). 

here a short report about some examples where stan- 
dard SIR88 provides unsatisfactory partial structures. 

RIFOLO 
48 out of 53 non-H atoms are located by standard 

SIR88. The complete structure is provided by applica- 
tion of our procedure. 

BED 
For this structure the average phase error for NEXP 

reflexions was markedly larger than for NLAR 
reflexions (40 ° against 19°). However, our process 
proved effective: 33 atoms out of 34 are located after 
application of our procedure while only 27 are 
correctly located by SIR88. 

Direct comparison of the molecular fragments pro- 
vided by the standard molecule-recognition program 
of SIR88 with the molecular fragments obtained at 
the end of our procedure is very informative. Two 
examples are shown. 

A Z E T  
In Fig. l (a)  the SIR88 output is shown. It is rather 

difficult to recognize in it the two symmetry-indepen- 
dent molecules contained in the asymmetric unit. In 
Fig. l(b) the complete crystal structure is shown. The 
three solid circles denote the atoms not found after 
the application of our procedure. 

APAPA 
In Fig. 2(a) the SIR88 output is shown: 44 non-H 

atoms (out of 63) are correctly located. Of the 53 
peaks connected in the fragment, 44 are correctly 
located (the crossed positions correspond to ghosts). 
In Fig. 2(b) the complete crystal structure is shown. 
Only three atoms (corresponding to the solid circles) 
are not found. 



A. ALTOMARE, G. CASCARANO, C. GIACOVAZZO AND D. VITERBO 747 

Table 2. Fit parameters for test compounds 

N R I F  N L A R  E M I N  N ~  2 E O M I N  NOe GOE (A~):~ 2 (A~o),o~ 

APAPA 3241 426 1.44 2858 1"22 2356 0"600 17 (11) 32 (31 ) 
AZET 1910 342 1"31 3003 1"03 8000 0"700 28 (25) 41 (43) 
BED 3570 286 1"55 2750 1"33 2757 1"000 19 (12) 40 (25) 
BOBBY 318 68 i'21 1867 0.890 2364 0.759 11 (12) 17 (20) 
CEPHAL 2770 334 1-48 3115 1"22 4874 0-842 10 (10) 16 (14) 
DIOLE 786 182 1 "2 2731 0"96 2054 0.600 9 (9) 24 (23) 
GOLD 3891 374 1.52 3262 1 '31 8000 0-700 16 (16) 20 (18) 
GRA4 4211 394 1"60 3774 I" 15 6941 0.600 0 (0) 3 (3) 
INOS 2934 304 1"61 2341 1-28 3286 0-600 0 (0) 1 (0) 
LOGAN 2428 258 1"54 2733 1 "27 3377 1"000 8 (8) 16 (13) 
NEWQB 3673 473 1"54 2347 1-24 1856 0"600 0 (0) 5 (1) 
NO55 1660 246 1"34 2688 !" 12 5609 0"600 15 (11 ) 29 (22) 
PGE2 1560 300 1"23 2594 0"96 4308 1"000 24 (20) 44 (44) 
QUINOL 2844 296 1"60 2848 1 '23 3709 0.600 0 (0) 2 (0) 
RIFOLO 5429 362 1 '72 2280 1 '51 5529 I "000 10 (10) 21 (18) 
TURI0 1340 219 1-35 2704 1.06 2509 0.835 10 (9) 30 (25) 

Concluding remarks 

A procedure for improving standard E maps is 
described. Amplitude truncation effects in the series 
representation of the electron density are strongly 
reduced by phasing a supplemental number of 
reflexions. F instead of E coefficients are used in the 

o 

N 2 

Cad \ 0  

( a )  

(b) 

Fig. 1. ( a )  A Z E T :  m o l e c u l a r  f r a g m e n t  p r o v i d e d  by s t a n d a r d  
SIR88. (b) A Z E T :  s y m m e t r y - i n d e p e n d e n t  molecu les .  Sol id  
circles denote  a toms  not  located  after app l i ca t ion  o f  ou r  pro-  
cedure .  

Fourier series and are combined with useful criteria 
for modifying the electron density. The final 
molecular models proved to be far better than the 
original ones. 

(a) 

0 - 4 /  

(b) 

Fig. 2. ( a )  A P A P A :  m o l e c u l a r  f r agmen t s  p r o v i d e d  by s t a n d a r d  
SIR 88. Crossed  circles c o r r e s p o n d  to ghosts .  (b)  A P A  PA: crystal  
structure. Sol id circles denote  a toms  not  loca ted  by ou r  pro-  
cedure .  
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Abstract 

The diamond, Ionsdaleite and sodalite structures are 
generalized to N dimensions and described. Ring 
counts and coordination sequences for the N +  1- 
connected nets are given for N-< 6. Simple analytic 
expressions are given for coordination sequences for 
diamonds, sodalites and the primitive hypercubic 
lattice. Replacing the vertices of diamonds and 
sodalites by regular simplices produces rare (open) 
stable sphere packings; general expressions for the 
density of these are given. 

Introduction 

Recent developments in the theory of quasicrystals 
and incommensurate structures have led to an 
increased interest in crystallography in more than 
three dimensions (e.g. Janssen, 1986); this is an area 
that has also been of enormous stimulation to pure 
and applied mathematics although there the emphasis 
has been mainly on dense lattices and sphere packings 
(Conway & Sloane, 1988). 

In three-dimensional crystal chemistry the four- 
connected nets are of particular importance being, 
among many other things, the basis of some elemental 
structures and of the framework silicates and 
hydrates. The diamond structure has a special place 
among these as it is the only such net with all vertices 
(atoms), edges (bonds) and angles equivalent. Such 
a net I term regular (it is noted that graph theorists 
usually employ this term in a much less restrictive 
sense). In this paper some properties of the N- 
dimensional analogs of diamond and its simplest 
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polytype (in three dimensions, lonsdaleite) are 
described. Another important net is that of sodalite; 
it has all vertices and edges equivalent (quasiregular). 
Generalizations of this net are also described. Some 
reasons why the properties of these structures might 
be of interest are given below after some necessary 
basic definitions. 

Recent discussions of nets (Stixrude & Bukowinski, 
1990; O'Keeffe, 1991a) have focused particular atten- 
tion on coordination sequences (Brunner, 1979; 
Meier & Moeck, 1979) and ring statistics (Marians 
& Hobbs, 1990). A coordination sequence consists of 
the numbers, rig, of kth neighbors of a vertex, a kth 
neighbor being one for which the shortest path to the 
reference vertex consists of k edges. One can define 
(O'Keeffe, 1991a) a dimensionless local topological 
density 

k 
Pk = E n,/k3. (1) 

i=1 

The limit as k ~ oo is called the global topological 
density p~. The generalization to N dimensions is 
obvious. The number of neighbors riNk for an N- 
dimensional structure can sometimes be fit to a poly- 
nomial 

N-I  
rink = E aN, ki" (2) 

i=0 

In that event poo=aN.N_l/N. In this work the 
coefficients have been empirically determined from a 
count of a large number of neighbors, the number of 
shells counted being at least twice the number of 
coefficients. 
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